The generator matrix

 1  0  0  1  1  1  1  1  1  1  6  1 2X+3  1 2X  1  1  1  1  1 X+3  3  1  3  1  1  1 X+6 2X  1  1  1  1  1  X  1  1  1  1 2X  1 X+3 2X+6  1  1  1 2X+6 2X+6  0  1  X  1  1  1  1 X+3  1 2X+3  1  1 2X+6  1  1  1  1  1  1  1  0  1  1  1  6  1  X  1  1  1 X+3 2X  1 X+6  1
 0  1  0  0  6 2X+4 2X+1 X+8 X+4 X+5  1  8  1 X+3  1 2X+4 2X+8  4 2X+2  2 2X+3  1 2X+6  1 2X+1 2X+3 X+4  1  6  1 X+3 X+2  8 2X+1  1 2X+5 2X+3  4 X+6  1 2X+8  1  1  6 X+5 X+1  1  1  1  5  1  1 X+3 2X+3  1  X  6  1 2X+7 X+2 2X X+5 2X+6  2 2X+6 X+7 X+7  X  1  1 X+2  6  1 X+5  X 2X+6 2X+3 X+6  1  1  7  1 2X+4
 0  0  1 2X+4  2  5 2X+1  X X+3 X+2 2X+2 X+1  4  3 2X+8  0 2X+8 X+1 X+6 2X+4  1  X 2X+7 X+1 2X+5  5  2 X+7  1 X+3 2X+3 2X+1 2X+5 X+7 2X+3 2X+3 X+7 2X+6 X+2  8  3  7 2X+7 2X+2  3 2X+5 2X+6 X+5 2X+4  5 2X+2 X+3 X+4  3  5  1 X+2  3  X 2X+8  1 X+1  7 X+6 2X+3 2X+4  5 2X+7  2  6 2X+6 2X+6  7  2  1  X 2X+8 X+8  6  2  1 2X+4  3
 0  0  0  3  3  3  3  3  3  3  0  3  0  3  3  6  0  0  6  6  3  6  6  3  0  0  6  6  6  0  6  0  6  6  3  0  0  6  6  6  6  3  0  6  0  0  0  6  6  3  0  3  6  3  6  0  3  6  0  6  3  3  6  3  3  6  3  3  3  6  3  6  6  0  6  6  3  0  6  3  0  0  0

generates a code of length 83 over Z9[X]/(X^2+3,3X) who�s minimum homogenous weight is 157.

Homogenous weight enumerator: w(x)=1x^0+426x^157+804x^158+1754x^159+3234x^160+2796x^161+4602x^162+5172x^163+3726x^164+4680x^165+5964x^166+3906x^167+4906x^168+5040x^169+2496x^170+2952x^171+2730x^172+1482x^173+1084x^174+708x^175+312x^176+148x^177+18x^178+18x^179+26x^180+12x^181+6x^182+8x^183+12x^184+8x^186+6x^187+6x^190+6x^191

The gray image is a code over GF(3) with n=747, k=10 and d=471.
This code was found by Heurico 1.16 in 9.31 seconds.